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Extended-Betz Methods for Roll-Up of Vortex Sheets

Vernon J. Rossow*
NASA Ames Research Center, Moffett Field, California 94035-1000

The method derived for the roll-up of vortex sheets shed by lifting wings has been extended so that it
can be applied to complex wakes that roll up into more than one vortex pair. Although these so-called
extended-Betz methods often predict realistic vortex structures that approximate measured ones, the
guidelines need to be improved if the predictions are to be reliable enough for such purposes as the
assessment of the hazard posed by a wake or for the validation of other theoretical methods. This paper
first describes the problem and then considers whether the five vortex invariants for the time-dependent
motion of two-dimensionlal vortices can provide improved guidelines. In particular, the vortex invariants
are studied to find out if they can be used to determine the initial division of the vortex sheet for separation
into multiple vortices, and then possible merger into larger vortices. It is concluded that any refinements
of the present forms of the extended-Betz methods to better define the structure of multiple vortex wakes
will be very difficult and probably cannot be derived from the vortex invariants.

Nomenclature
wing span, ft
lift coefficient, L/gs
wing chord, ft
lift, 1b
total number of vortices
dynamic pressure, pUZ/2, 1b/ft’
radius, ft
wing planform area, ft*
kinetic energy of flowfield, slug/ft s
time, S
freestream velocity, ft/s
velocity components in x, y, z directions, ft/s
Kirchhoff—Routh path function
distance in flight direction, ft
distance in spanwise direction, ft
distance in vertical direction, ft
circulation bound in wing, ft*/s
circulation in point vortex, ft”/s
= air density, slug/ft s°
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Subscripts
i, J =
n

indices

vortex number

plane of vortex sheet
plane of rolled-up vortex
wing plane

= centerline value
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Introduction

HE hazard posed by the vortex wakes of subsonic trans-
port aircraftis currently being circumvented by specifying
that the in-trail distances between aircraft during landing and
takeoff operations are large enough so that hazardous wakes
are not encountered. Unfortunately, the spacings used are
larger than required for other air traffic factors, so that the full
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capacity of airport runways is not realized. In an effort to in-
crease the capacity of airports, research efforts have been di-
rected at developing methods that will predict the structure of
vortex wakes to better evaluate the hazard, and finding those
characteristics of the wake-generating wings that make their
vortices less hazardous.

In support of the goal for greater airport capacity, this study
is an attempt to improve the present capability to predict vortex
structure from the span loading on the generating wing. In
particular, the present study examines the simple method in-
troduced by Betz,' and its extensions, which relate the span
loading on a wing (or the vortex sheet that it sheds) to the
rolled-up vortex far downstream (Fig. 1). The derivation of the
basic Betz method' is based on three of the five available in-
variants for the time-dependent motion of two-dimensional
vortices. To produce a unique result, it was also necessary for
Betz' to specify the order in which vorticity or circulation is
rolled into or layered onto the vortex center. Based on experi-
mental observation, it is specified that the vortex sheet rolls
up sequentially from the wingtip inboard to the wing center-
line. The Betz roll-up theory came into active use during the
1970s, when research into the hazard posed by vortex wakes
of subsonic transport aircraft increased substantially because
of safety and capacity concerns at airports.>~"> As a conse-
quence of the increased use of the Betz method,' several re-
searchers noted a simplified version of the roll-up equations at
about the same time.*”® The simplified roll-up relationships
presented in Fig. 1 are derived by means of the integral forms
of three vortex invariants for two-dimensional vortices.* To
arrive at a viable method, Betz' assumed that the vortex in-
variants could be applied to portions of the vortex system
rather than to the entire flowfield. The method and sequence
of application chosen by Betz' are based on experiment and
on a knowledge of fluid mechanics, so that the results are
surprisingly accurate. The small cross-hatched areas in Fig. 1
trace how a vortex element proceeds from the vortex sheet at
the trailing edge of the wing, through the roll-up process, to
fill an annulus of the fully developed vortex far behind the
wing.

The Betz method' has been found to predict the vortex struc-
ture when the assumptions in the method are valid. Usually,
the primary requirement of the span loading on the wake-gen-
erating wing is that the vortex sheet it sheds should decrease
in strength monotonically from the wingtip to the centerline,
so that a single vortex pair is produced in the wake.®” Because
it is assumed that the rolled-up vortex is axially symmetric, it
is also required that any other vortices in the wake be far
enough away so that the streamlines can be approximated by



ROSSOW 593

T(y)

nt vortex element

Final fully-
developed
/ vortex (x-oo)

e [T |

Fig. 1 Diagram®of the Betz method" for relationship among span
loading on wing, vortex sheet, and final rolled-up vortex.

concentric circles. If, however, the span loading on the gen-
erating wing is such that multiple vortex pairs persist into the
wake far behind the wing, the formulation by Betz' is inade-
quate; e.g., for triangular span loading and for certain span
loadings carried by wings with flaps for landing and takeoff.*
~> Because the basic method is simple, researchers were mo-
tivated to stay with the basic Betz analysis' and simply extend
its capability by the addition of guidelines to eliminate the
unrealistic results produced by the Betz method' when the span
loadings and vortex sheet strengths are not monotonic.*® These
so-called extended-Betz methods' use guidelines based more
on intuitive rules rather than on an approach that has a theo-
retical basis. It is found that the extended guidelines do elim-
inate certain undesirable features of the original Betz theory'
(such as multiple-valued swirl velocities), and also provide a
rational basis for analyzing more complex vortex wakes.*™"
However, close scrutiny of the guidelines that determine the
circulation content (and its distribution) within each of the vor-
tices, indicates that the roll-up procedures are inadequate for
the general case when experimental accuracy is required.®"
Because the guidelines added to the Betz method' to date do
not consistently provide reliable results, they either need to be
improved upon or exchanged for a new analysis procedure.
The study reported here indicates that it is necessary to go to
a new analysis procedure.

The objective of this study is to find improved guidelines
for the rolled-up structure of wakes composed of multiple vor-
tex pairs. After the problem has been described and illustrated,
possible sources for improved guidelines are explored. In par-
ticular, the values of the vortex invariants are examined and
then compared with each other during the roll-up process to
determine whether they give any indication as to how a com-
plex vortex sheet should be divided and rolled up to form a
wake composed of multiple vortices. To facilitate the analysis,
this study begins by writing the vortex invariants for a system
of two-dimensional point vortices in an inviscid and incom-
pressible fluid.">'* The first three invariants are then used to
rederive another form of the Betz formulation.' Because only
three of the invariants are used in Betz’ analysis,' a determi-
nation is next made as to whether the two unused vortex in-
variants are conserved as the vortices in the vortex sheet are
incorporated into the rolled-up vortex. Because all of the in-
variants are found to be conserved throughout the one-sided
roll-up process, an energy formulation is derived and then
compared with the formulation based on the second moment
of circulation. The variation of the vortex invariants as a func-
tion of the spanwise roll-up sequence is then studied for sev-
eral different span loadings. The objective of this exercise is
to find out if any of the invariants provide an indication of the
proper division of the vortex sheet into segments for multiple
vortex wakes, or for the proper wrapping sequence of the vor-

ticity in a given vortex. It is concluded that the vortex invar-
iants do not by themselves provide the guidelines being sought,
and that the necessary criteria or equations must be found else-
where; e.g., from experiment or from numerical analysis. It is
also concluded from the numerical analysis of several vortex
sheets that the sheet division and roll-up process can be very
complicated and prolonged, so that the final disposition of vor-
tices may be quite different from that anticipated when a pre-
diction is based only on the structure of the vortex sheet at the
trailing edge of the wing. It is also concluded that improve-
ments in the Betz procedures,' that would include items such
as the effect of the opposite side of the wake and the motion
of the entire vortex system downward, require integrations of
the invariant relationships that cannot be carried out analyti-
cally in simple terms and are therefore not practical. The anal-
ysis presented here is restricted to two-dimensional, inviscid,
and incompressible flow and does not include variations that
might occur in the vortex wakes of helicopters."” Furthermore,
variations in the streamwise velocity as a function of radius in
the vortex will also be assumed to have a negligible effect on
vortex structure.””'>'®

Background

The extensions applied*® to the basic formulation of Betz'
treat two aspects of the roll-up procedure that were not con-
sidered in the original analysis. The first relates to the division
of vortex sheets for roll-up into multiple vortices on each side
of the centerline. Once the vortex sheet has been properly di-
vided, the second aspect concerns how, and in what sequence,
the vorticity in the vortex sheet should be layered around the
center of each rolled-up vortex in the wake. Guidelines pre-
sented in Refs. 4 and 6 recommend that the vortex sheet be
divided for separate vortices at locations where the vortex
sheet ends, passes through zero (or has minimum strength),
and/or where the self-induced vertical velocity passes through
zero. The centers about which each vortex begins its wrapping
sequence of vorticity are chosen at those locations where the
vortex sheet ends, and/or where the sheet has a maximum
strength. When the vortex center is located at the ends of a
sheet segment, it forms a single spiral as it progresses from its
originally near-flat structure to the final axially—symmetric
fully developed vortex. When a vortex center is located some-
where in the middle of a vortex sheet segment, and not at an
end, vorticity is incorporated into the rolled-up vortex from
both sides of the chosen center. That is, the sheet rolls up as
a double spiral from a location within the vortex sheet seg-
ment. Examples of the procedure when applied to idealized
span loadings illustrate how some vortex structures generated
by the original Betz method' are changed into realistic vortex
structures® and are found to compare favorably with experi-
ment.®* The procedures employed by Ref. 6 organized and in-
terpreted flight measurements of vortex structures under diffi-
cult conditions. Recent application'” of the extended-Betz
method of Ref. 6 produced good agreement with experiment
in several examples, but in some other cases, the agreement
was not as good. As noted previously, it was concluded in Ref.
12 that extended-Betz methods can produce acceptable results
in a number of cases, but that the guidelines need to be im-
proved. As mentioned in the Introduction, the study reported
here indicates that it is necessary to go to a new analysis pro-
cedure.

Before discussing the Betz methods,' several simple exam-
ples are presented to indicate the complications that can arise
when the vortex wakes of aircraft are analyzed. The examples
presented in Figs. 2—-4 for three different span loadings were
chosen to illustrate the effect of the structure of the span load-
ing, or vortex sheet strength, on sheet division and roll-up
structure of the final vortex wake. The dimensionless label
with each of the plots for the three cases correspond roughly
to 0, 5, and 10 span lengths behind the wake-generating wing.
The axes have been shifted downward in all cases so that they
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Fig. 2 Time-dependent roll-up of vortex sheet shed by elliptic
loading; N = 26.
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Fig. 3 Time-dependent roll-up of vortex sheet shed by isolated
wingtip with triangular loading, i.e., vortex sheet of constant
strength; N = 26.

remain near the vortex locations. Elliptic loading {I'(y)/T', =
[1 — (2y/b)2] l/2} is chosen first to demonstrate how the vortex
sheet rolls up from the wingtip inboard without sheet division
(Fig. 2). In contrast, a vortex sheet of constant strength [as
shed by an isolated triangularly loaded wingtip; I'(y)/T'o =
1 — |(2y/b| rolls up from each end so that the vortex sheet is
divided in half to form two vortices of equal strength and
structure (Fig. 3). (The port side of the wake is left blank in
Fig. 3 to emphasize the one-sided character of the example.)
In Fig. 3, the four-point vortices in the center of the vortex
sheet are represented by open rather than filled symbols. From
the movement of these four vortices, it becomes clear that, as
expected, a single vortex sheet of constant strength divides at
its center to form two equal vortices. If, however, the vortex
sheet is shed by an entire wing that is triangularly loaded, the
inboard ends of the vortex sheets from the port and starboard
sides of the wake are adjacent and opposite in sign. The two
sheets of constant and opposite strength now influence the di-
vision process so that the two vortices on each side of the
centerline are not of equal magnitude or structure (Fig. 4).
Rather, the influence of the vorticity on the opposite side of
the centerline causes the division point of the two vortex sheets
to be offset so that all four of the point vortices at the center
of each sheet are incorporated into the outboard vortices, to
form two vortex pairs of unequal strength. Another guideline
suggests that sheet division be chosen at those spanwise lo-
cations where the up- or downwash velocities vanish. Such a
criterion is also inadequate because such a guideline indicates
that three rather than four-point vortices join the outboard vor-
tex, which is not what actually occurs.

The examples in Figs. 2—4 have a far simpler roll-up pro-
cess than the vortex sheets shed by wings with flaps deployed
and with wing-mounted engines. If the drag of the wing, its
high-lift elements, and the thrust of the engines are added to
the self-induced convection of the circulation in the wake, the

z/b
lessesesssecicasessssssss nesessssssccsssssssessed
-05 v/b 0.5
Tt/b%2=0.0
-0.5—
L e
. L .
o o
| % \L? ]
o o
-0.5 & @® y/b 0.5
3 K
Ttb?=05
-0.5—
o & 9% o
X %
. - .
L o8} o |
~05 vib 0.5
o
T'tb?>=1.0
-0.5—

Fig. 4 Time-dependent roll-up of vortex sheet shed by triangular
loading, i.e., two adjacent vortex sheets of constant and opposite
strength; N = 26.
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formation of the final configuration of vortices is even more
complicated, thereby requiring more extensions than discussed
here. It is also important to note that the use of point-vortex
calculations to simulate the dynamics of vortex wakes is sim-
ple, convenient, and representative of a number of character-
istics of vortex wakes. However, the method does have faults.
Firstly, the accumulation of vorticity or circulation into discreet
locations prevents simulation of the stretching and spreading
of the circulation in a vortex sheet over the spiral shape and/
or annulus during the roll-up process. It also does not include
the slow asymptotic assimilation of the remote weak segments
of the sheet into the final vortex structure. The point-vortex
representation also sometimes yields unrealistic motions when
two or more vortices approach one another closely because the
velocity is singular at the center of a point vortex.

Invariants for Motion of Vortices

The invariants for the time-dependent motion of two-dimen-
sional vortex systems'>'* relate a given function or state at a
given time, i.e., at the wing trailing edge, to the state of the
system at another time, i.e., at a station far behind the wing.
To facilitate the analysis to follow, the invariants presented in
various texts'>'* are now written for vortex sheets that are ap-
proximated by point vortices whose strengths are given by vy;
and locations by (y; z,).

Conservation of circulation:

N
r,=r,= 2 v; = const (1)
i=1
Conservation of first moment of circulation:

N
al's = 2 Y.y: = const (2a)
i=1

N
vl = 2 ¥iZ; = const (2b)
i=1

Conservation of second moment of circulation:

N

Jy = 2 vi(y: — $3° + (z; — Zx)°] = const (3)

Conservation of angular moment of circulation:

N N—-1 N
_ _ Y
M, = Z YLy — Inw: — (2 — Zwvi = Z _Zl 21_; = const
i= i=1 j=i+

€]

Conservation of energy:

N-1 N
W= - S S oy al(s, — ) + G 2 = const
=1 j=it1
(5)

where N is used to represent the vortex sheet. It is emphasized
here that the vortex invariants strictly apply only when all of
the circulation in the flowfield is included in the various sum-
mations. If such a requirement is strictly enforced and the vor-
tex invariants are applied to the vortex system as a whole, very
little information is obtained because Eqgs. (1) and (3) vanish
and the five summations usually contain a much larger number
of unknowns. Therefore, the Betz method' achieves a solution
for the roll-up problem by specifying that the invariants be
applied progressively to portions of the flowfield so that the
number of unknowns does not exceed the number of equations
available for a solution. Results achieved by the Betz method'

are in good agreement with experiment, even though the in-
variants are applied to only certain portions of the vortex sys-
tem at a time, because the assumptions made and the guide-
lines given by Betz' are valid for the way that the invariants
are used.

When the vortex invariants are applied to portions of the
vortex system, in Eq. (1) the portion of the vortex sheet that
has been incorporated into the vortex by the Betz method' is
also equal to the circulation bound in the wing at that spanwise
station, i.e., I' (y,) = I'(y,), so that the two can be used in-
terchangeably. Equations (3) and (4) are written so that the
centroid of circulation (Ju, Zx) is used as the reference location
on which the second moment and angular moment are com-
puted to put the equations in the forms needed for the roll-up
analysis. The equations are still applicable even if another ref-
erence location is used. The function W in Eq. (5), which is
often referred to as the Kirchhoff—Routh path function, is
sometimes written with a positive sign. The negative sign is
correct, however, because it represents the variable portion of
the kinetic—energy content (usually designated by T') of the
flowfield."* When the integration over the flowfield is carried
out to determine the energy, the positive part is found to be a
constant. The positive part is also found to become infinitely
large when the area of integration is expanded to include the
core region of the point vortices and the region at very large
radius.”™'* Because the infinite parts are constant with time,
they are usually left out of any analysis of time-dependent
vortex motions."

In Egs. (1-5), and those to follow, the subscript s is used
to denote quantities in the across-stream (or Trefftz) plane lo-
cated at the trailing edge of the wake-generating wing where
the vortex sheet begins. The subscript v is used to denote quan-
tities at the Trefftz plane located far downstream from the wing
where the vortices in the wake are assumed to be fully rolled
up (Fig. 1). The subscript w is used to refer to the wing itself
and to quantities associated with the span loading. The span-
wise and vertical velocity components in Eq. (4) for the ith
vortex are given by

| N
Ve = _; 2 ['Yi(Zi - Zj)]/[(yi - yj')2 + (z, — Zj)z] (6a)

=
I

1
= 5o 2 e = VG = 3 + = )] (6b)

Roll-Up Procedure Based on Second Moment

Assumptions

The basic- and extended-Betz methods' both consider only
two states of the vortex system. The first state consists of the
essentially flat vortex sheet as it is shed at the trailing edge of
a lifting wing (Fig. 1). The second state consists of the rolled-
up or fully developed axially symmetric vortices in a Trefftz
plane located far behind the wake-generating wing. The as-
sumption of axial symmetry is approximately valid when the
portion of the wing wake being analyzed is far enough in the
spanwise direction from the opposite vortex so that the final
Trefftz-plane streamlines do not deviate far from circular. In
both methods, vortex invariants are used to relate the radius
at which a portion of the circulation in the vortex sheet at the
trailing edge of the wing is deposited in the fully developed
vortex. (The strength of the vortex sheet is, of course, propor-
tional to the derivative of the span loading on the wing.) Betz’
analysis' does not concern itself with the time-dependent mo-
tion of the vorticity from one state to the other. In the strictest
sense, the invariants require that all of the vortices or vorticity
in the flowfield be included in its evaluation. As indicated here,
the Betz method' and the analysis to follow, apply the invar-
iants to only certain portions of the vortex system at a time.
A justification for such an assumption at the station far down-
stream from the wing is that the swirl velocity in an axially
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Fig. 5 Streamlines for the flowfield of two equal and opposite
point vortices designated by filled symbols: a) vortices forcibly
held in place, and b) vortices moving under self-induced velocity
field.

symmetric vortex depends only on the circulation contained
within the radius where the velocity is being determined, and
is not affected by circulation outside of that radius that is con-
centric with the inner circular streamlines.

The simplicity of the basic-Betz method' results from sev-
eral assumptions. First, it is assumed that the span loading at
the wingtip being analyzed is far from the vorticity being shed
by the opposite side of the wing. This assumption permits the
streamlines in the rolled-up vortex to be approximated by con-
centric circles so that the analysis is greatly simplified. If the
circulation and rolled-up vortex on the opposite side were in-
cluded in the analysis, the streamlines would be offset laterally
as illustrated in Fig. 5a for two-point vortices. Similarly, the
addition of a second equal and opposite vortex to the flowfield
causes the vortex pair to move downward because of the mu-
tual induction of the velocity field of the two vortices. If this
downward motion is included in the analysis, the streamlines
associated with the vortex pair and the circulation distribution
are confined to a vortex oval'® (Fig. 5b). In Fig. 5, the spanwise
distance between the vortices has been kept the same to illus-
trate the differences in the streamline locations and shapes
when the vortices are allowed to move. As a consequence, the
influence of the opposite vortex causes the streamlines to be
enclosed within, and to be convected within, an oval. The
streamlines are then no longer circles and the approximate cen-
ters of rotation are offset laterally (Fig. 5). Furthermore, the
location of the circulation associated with each streamline is
quite different in the two cases shown in Fig. 5, which are
also different from the one assumed by Betz.' These changes
should be incorporated into any upgraded or extended method,
but they increase the complexity of the roll-up analysis to the
point where it becomes necessary to resort to numerical meth-
ods for a solution.

Betz’ original method' next assumes that the vortex sheet
shed by the wing rolls up in an orderly fashion from the wing-
tip inboard, so that successive layers of the vortex sheet are
wrapped around the center and previous wrappings (Fig. 1). It
is found from the study of experimental and idealized hypo-
thetical span loadings that the vortex sheet shed by a wing
does roll up from the wingtip inboard in an orderly fashion if
the span loading and the vortex sheet that it sheds increases
monotonically from the wingtip inboard.>™** Of these two cri-
teria, the second overrides and includes the first, so that it is

only necessary to specify that the strength of the vortex sheet
increases monotonically from the wingtip inboard to the wing
centerline. It is difficult to derive a precise dividing line be-
tween those span loadings that produce an orderly roll-up as
assumed by Betz' and those that shed vortex sheets that roll
up about vortex centers other than the wingtip. Vortex sheets
shed by other span loadings that are more typical of aircraft
in their landing configurations, have multiple vortex centers.
Analysis of these span loadings can be carried out by the use
of extended-Betz methods' that require more assumptions re-
garding the roll-up process. As mentioned previously, it has
been found that further refinements of both the original-Betz
and the extended-Betz methods' require inputs from other the-
oretical and/or numerical methods as to the roll-up process that
greatly complicates the methods and may not increase its re-
liability.

Finally, the conservation of circulation between the two
states is combined with the second moment of the circulation
in the two planes to determine the radius in the rolled-up vor-
tex where the circulation from the vortex sheet shed by the
wing is deposited. As mentioned previously, the vortex invar-
iants apply strictly only when all of the vortices in the flowfield
are included. When the Betz method' assumes that the opposite
wingtip and its shed vorticity is remote, application of the sec-
ond moment of vorticity to only one side is approximate. Be-
cause the influence of the opposite vortex fades as the square
of the lateral distance between the vortex centers, the influence
is present throughout the roll up and is probably only negli-
gible near the centers of the vortex where high rotational ve-
locities dominate.

Roll-Up Equations

In this section, the basic-Betz roll-up method' is derived by
use of the first three invariants written in their point-vortex
form; i.e., Eqs. (1-3). As with the derivation of the integral
form of the roll-up equations, the center of the rolled-up vortex
is located at the centroid of circulation (y,, Z,). The conser-
vation of circulation as it is transferred from the vortex sheet
behind the wing into the fully developed vortex far behind the
wing is now written as

L) =T = ) v (7)

where it is assumed that the point vortices are numbered be-
ginning with the point vortex nearest the wingtip and then
proceed inwardly to the Nth vortex that is nearest the centerline
of the span loading. In Eq. (7), the subscript n is used to
designate the number of vortices that have been rolled up into
the final vortex structure. The radius r, that encloses the cir-
culation in the vortex is related to the corresponding spanwise
station on the wing y, by the second moment of circulation
written for the station at the wing as

o= D) Vi = 5 + (@ = 2] (8a)

and at the rolled-up vortex as

T = 2 yir? (8b)

At each stage of the roll-up, the second moment of circulation
is conserved as each segment of vortex sheet is transferred to
the rolled-up vortex that requires that J,,, = J,,.

Similar equations are now written for the (n — 1)th point
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Fig. 6 Comparison of span loading and up- and downwash for
rolled-up vortex structure as predicted by continuous and point-
vortex methods using second moment of circulation; uniform
spacing, N = 51; ——, continuous; ----- , point vortex.

vortex. The difference between the equations written for the
(n)th and the (n — 1)th point vortex systems then becomes

AT =Joy = vy = Yl (9a)
Ay, =Jo — Jse (9b)

Therefore, when increments in the second moment of circu-
lation for the two planes are equated AJ,, = AJ,,, the radius
at which the circulation vy, from the nth vortex is deposited is
given by

rp= {(NIUe — T ]} (10)
where the circulation contained in the nth vortex is spread over
an annulus or ring of zero thickness at the radius 7,.

The difference between the second moments for the vortices
in the wing plane, J,, and J4.-1, cannot be combined for a
simplification because the centroids of the vortices for the nth
and the (n — 1)th vortex systems are usually not exactly the
same. As the spanwise increments in the span loading become
smaller, the difference between the locations of the centroids
for successive point vortices also becomes smaller so that, in
the limit of a large number of vortices, they are equal. The
roll-up equations for the point vortex and integral formulations
are then the same. In a numerical example, the main difference
between the results predicted by the integral and point-vortex
formulations is brought about by the fact that the first point
vortex has its entire circulation located at the center of the
rolled-up vortex. In the integral formulation, the circulation
from the first vortex is spread over a disk whose radius is
determined by the equations in Fig. 1. This difference near r
= 0 causes an offset in the first and all other radii in the dis-
tribution of circulation in the rolled-up vortex. If the radial
offset of the first vortex is added to the results for the point-
vortex formulation, the two results are brought into agreement.
With this adjustment, the difference between the vortex struc-
ture predicted by the two formulations is negligible when at
least 50 subdivisions in the span loading are used in the roll-
up procedure.

To assemble the equations needed to compare the results of
the two formulations, the equations derived when the span
loading is treated as continuous and the invariants are written
in their integral form are repeated here. From Ref. 4, the re-
lationship between r, and y, that corresponds to Eq. (10) is

re = |5y — v (11)

Equation (11) may also be written as

Yn
1
r,=— .(y) dy (12)
Ly, JCE
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Fig.7 Comparison of incremental values of vortex invariants for
elements in vortex sheet and in rolled-up vortex as predicted by
second moment of circulation; cosine spacing, N = 51; —— vortex
sheet; ------ , rolled-up vortex: a) second moment, b) angular mo-
ment, and c¢) energy.

With the roll-up relationships available for both the continuous
and point-vortex representations of the vortex sheet, the two
methods are compared in Fig. 6 for elliptic loading. It is found
that the up- and downwash velocity distributions predicted by
Egs. (10) and (11) are the same for all practical purposes. In
Fig. 6, the two span loadings appear to differ slightly. The
difference arises because the spanwise location of the point
vortex is at the center of the segment of vortex sheet that it
represents, which tends to elevate the value for the bound cir-
culation a small amount over that for the continuous span load-
ing. It is also of interest to plot the magnitude of the increment
in the second moment of circulation at each step of the incor-
poration of a point vortex from the vortex sheet into the rolled-
up vortex (Fig. 7a).

Comparison of Invariants During Roll-Up

In the Betz method,' the incremental values of the three
vortex invariants used in the formulation do not change as the
piecewise elements are taken from the vortex sheet and incor-
porated into the rolled-up vortex. In this section, the incre-
ments for the second moment of circulation are compared with
the invariants for angular moment and for the energy to find
out if, during the transfer, the equality holds not only for the
second moment, but for the other invariants as well.

Invariant for Angular Moment

The invariant for the angular moment of the circulation
about its centroid, Eq. (4), is not used in Betz’ derivation of
the equations for vortex structure. A determination is now
made as to whether the invariant’s value is sustained from the
wing to the vortex plane as the roll-up procedure progresses
from the vortex center to its outer limit. Because the invariant
for the angular moment of the circulation is presumably an
independent invariant for vortex motion, this may not neces-
sarily be true. It was found, however, that the numerical values
of the invariant for the vortex sheet and for the rolled-up vor-
tex planes at each step in the roll-up sequence are exactly the
same (Fig. 7b). Because such an outcome seemed unusual,
Egs. (2) for the centroids and Egs. (6) for the velocity com-
ponents in the wing plane were inserted into the equation for
M, given by Eq. (4). It was found that the resulting dependence
of M, on the locations of the vortices disappeared and the value
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reduces to the double summation on the right of Eq. (4). The
invariant for the angular moment of the circulation appears
then to be a check on the computational accuracy of the ve-
locity components and not necessarily a completely indepen-
dent equation. Equation (4) was then found to not be useful
for the development of a roll-up procedure nor for a deter-
mination for occurrences when the roll-up sequence is pro-
ceeding incorrectly.

Invariant for Energy

A determination is now made as to whether the invariant for
the energy is conserved during the roll-up process as assumed
by the Betz methods. As stated previously, the invariant for
energy is not used in the derivation and, therefore, does not
necessarily need to be conserved at the various piecewise
stages of the roll-up of the vortex sheet. To follow the invariant
for the energy during the incorporation of vortices into the final
vortex, the increment in energy for a vortex element from the
vortex sheet is written for the nth vortex element as

AW, = W, — W, (13)

The invariant for the energy of the vortex sheet is, from Eq.
(5), written for the roll-up process as

n—1 n

W, = -2 2 2 vy, nl(y: — y)* + (z; — z,)’] = const

4m = =

where n is the number of vortices being incorporated into the
rolled-up vortex, beginning as before with the vortex located
at the wingtip, which is usually the strongest.

Because an equation for the energy of a system of concentric
vortex rings in the rolled-up vortex plane is not available, it is
derived by integration of the equation for the kinetic energy
of the fluid between the rings. Because the fully developed
vortex is assumed to be axially symmetric, the energy 7, is
given by

£3

T, = L f vi2mr dr (14)
2 Jo

where the swirl velocity for (r,-, < r < r,) is given by

n—1
Yi
= 2mr

(15)

Von =

The integration for the energy in the flowfield goes from the
radius of one vortex ring to the next. Because the circulation
from a given point vortex is spread over an annulus of zero
thickness, no energy is contributed by the ring itself. Further-
more, it appears that no energy is expended by the process that
distributes the circulation contained in the point vortex around
the annulus. Because the first point vortex is deposited at the
center of the rolled-up vortex at zero radius, the first integral
in Eq. (14) is given by

noo,
T,=% f 2l dr = L yinr) — a(n,al - (16)
o 2Tr 4

As pointed out by Batchelor,' the contribution to the energy
by the term that goes to infinity as r — 0 is constant with time
and is therefore ignored. Similarly, the contribution to the en-
ergy by the fluid outside of the radius of the outermost ring
also goes to infinity at the upper limit of integration. Once
again, it is constant with time and is ignored. The symbol W,
(rather than in T,) is used to denote the time-varying portion
of the kinetic energy in the flowfield of the vortex sheet be-
cause it does not contain the infinite contributions to the in-

variant for energy. Similarly, the parameter W, is used to de-
note the finite and time-varying quantities for the energy in
the flowfield of the rolled-up vortex. The finite and variable
parts of the energy of the rolled-up vortex where the point
vortices are deposited are then

-
W, = - [vi€n(r) + (yi + v2)° €n (—3> + (vi + 2
41 r

2

n—1 2
+ v, n <5> ot (2 'y,-) n (r—>
I3 =1 Tn-1

- (2 %) En(r,)] (17)

i=1

The difference in the energy between the nth and the (n —
Dth step is found by subtraction to be

AW,, = ﬁ [(2 y[> - (2 'y,-) } en(r,) = AW,, (18)

i=1 i=1

A comparison is made in Fig. 7c of the energy increments
in the wing plane with the energy increments in the rolled-up
plane when the roll-up radii are based on the second moment
of circulation. The results in Fig. 7c indicate that the energy
increments are close, but not in perfect agreement. Because
point-vortex formulations are used to derive the energy in both
planes, it appears that the energy is approximately, but not
exactly, conserved when the second moment of circulation is
used in a piecewise process to carry out the roll-up procedure.
No extreme variations between the two results were observed
in the cases tested, which suggests that large errors in energy
levels do not occur. The agreement at the end of the vortex
sheet where the circulation goes to the center of the rolled-up
vortex is usually not as good as the rest of the vortex sheet.
The generally good agreement observed in Fig. 7c persists
when computations were carried out for other span loadings.
It was found that the shape of the curves did change as the
span loadings changed, and also as the vortex spacings
changed, i.e., uniform or cosine distributions, but the conser-
vation of energy was just as good in all of the cases tested. It
was also noted that when cases were computed, wherein the
vortex sheet should have rolled up into two vortices rather than
just one, e.g., triangular loading, the energy relationship did
not provide any kind of signal to indicate that the progressive
roll up of a vortex sheet about one vortex center, rather than
two, was improper.

Roll-Up Procedure Based on Invariant for Energy

The difference in energy (rather than second moment) be-
tween the nth and the (n — 1)th vortex element [Eq. (18)], is
now used to calculate the radius r, at which the circulation is
deposited in the rolled-up vortex plane. The comparison in Fig.
8 of the up- and downwash distribution calculated by use of
the invariant for energy [Eq. (18)], with that calculated by
means of the second moment, indicates that both yield about
the same structure. When applied to elliptic and triangular span

40 ~— - Second moment
Energy
bw(y)T, Q\‘—__—
0 | ]
0.5
y/b
-4.0 -

Fig.8 Comparison of up- and downwash distributions for rolled-
up vortex structure as predicted by second moment and by energy
formulations assuming vortex sheet composed of point vorti-
ces; cosine spacing, N = 51; ——, second moment formulation;
------ , energy formulation.
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Fig. 9 Vortex ring approximation to rolled-up vortex pair used
in attempt to derive energy relationship.

loadings, it is found that the energy formulation is more cum-
bersome to use and that it sometimes provides erratic results
near the center of the vortex where r, = 0. Furthermore, it
was found that in some cases it is necessary to use far more
point vortices in the analysis to get reliable results. It is con-
cluded, therefore, that a formulation based on the second mo-
ment of circulation is more robust, more reliable, and easier
to use than a formulation based on energy. It is interesting to
note, however, that the increments in energy are approximately
but not exactly conserved during the roll-up process. In an
approximate method, such as Betz’, the agreement is quite
good considering the number of assumptions made in the the-
ory.

The availability of a fairly simple relationship for the energy
increment in the vortex sheet and its corresponding form in
the vortex ring located in the rolled-up vortex [Eq. (18)], sug-
gests that similar simple relationships might be found for other
characteristics of the roll-up process. It is pointed out that Eq.
(18) was readily found because the analysis was restricted to
one side of the wake so that the vortex streamlines could be
assumed to be concentric circles. If the extended-Betz methods
are to be improved, any number of areas for analysis using
energy are available. To illustrate the procedures to be tried,
the concentric ring geometry used to derive Eqs. (14—18) is
modified to analyze the redistribution of vorticity of a pair of
point vortices in the vortex sheet into a vortex ring on each
side of the wake centerline (Fig. 9). Such a solution would be
a first step in an extension of the original Betz method to
include both sides of the wake. Unfortunately, it was found
that the integrations required could not be carried out analyt-
ically even for such a modest extension. The complexity arises
because the streamlines are not concentric circles. This exer-
cise again illustrates that the improved guidelines for extended-
Betz methods' are difficult to derive and that the results may
be too complex for intuitive guidance or practical analysis of
wakes.

Concluding Remarks
Although extended-Betz methods provide reasonable results
for and insight into the roll-up process for complex lift-gen-
erated vortex sheets, a need does exist to improve the relia-
bility of the method. The study described here indicates that

the improved guidelines will not be provided by the invariants
for the time-dependent motion of two-dimensional vortices.
The improved guidelines must then either be sought elsewhere
or the rolled-up structure of vortex wakes must be determined
by other techniques, e.g., numerical analysis. The present study
did again find that the complexity and duration of the roll-up
process for wakes with multiple vortex pairs make it difficult
to develop a simple set of guidelines for the division and roll-
up of vortex sheets. Because the objective of the study was
not achieved, and both the basic- and extended-Betz methods
are simple, easy to use, and do provide an estimate of the far-
field vortex structure, it is recommended that the extended-
Betz methods continue to be used. It should always be rec-
ognized, however, that the predictions are based on a number
of approximations that restricts their use to certain experi-
mental and theoretical applications.
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